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Abstract wherel is the dc bias current arids the frequency
This paper examines the low-frequency noise Thek, a andby are_ constant_s tha.t gre d.eV|ce depen—
properties of millimeter-wave GaAs and InP dent. Generallyb; is near unity, giving flicker noise
Schottky diodes. Measurements of diodes fabri- its characteristid/f behavior.

cated using both HEMT and HBT epitaxy will be Another source of low-frequency noise is burst
presented.  These noise measurements should,ise |t is suspected that burst noise is related to
enable the development of accurate models useful jyea\y-metal ion contamination, carrier generation and
in the analysis and design of MMIC components.  ocombination within the semiconductor bulk [1,2],
and DX (deep trap) centers [3]. The noise current
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Figure 2: (a) InP and (b) GaAs HEMT-based

Schottky diode cross-section.
spectral density has the form:
3 1%
i, = kg ——— (2)
of
1+
(f U

wherel is the dc bias curreritjs the frequency, anfd
is the burst corner frequency. Constdgisy,, and by
are also device dependent. Generdidlyhas a value

Assuming the noise sources are uncorrelated, a
general low-frequency noise equation is given by:

2 _ .2, .2, .2
in =i +ipgtiy,  (3)

wherei,? is broadband white noise due to shot and
thermal contributions.

Device Descriptions.

The Schottky diodes presented in this paper are
fabricated using the GaAs and InP HBT [4,5] and
HEMT [6,7] processes developed by TRW. Figure 1
shows the GaAs and InP HBT Schottky diode struc-
tures. The Schottky barrier is formed in the collector
region, with a Schottky p+ ring guard to provide elec-
trical isolation. The diodes have a contact area of 7
um x 7 um. Figure 2 shows the cross-section of the
HEMT-based diodes. The Schottky contact is formed
at the 0.1um T-gate. The source and drain ohmic
contacts are connected together to form the cathode.
The HEMT Schottky diodes presented here consist of
four-fingered gates with a total gate width of|40.

Measured Results

The diode’s low-frequency noise properties were
measured using a custom-made probe card. Figure 3
shows a simplified schematic of the noise measure-
ment system. Rechargable lead-acid batteries were
used to provide a low-noise bias to the diodes. This
system was used to measure the diode noise from 100
Hz to 500 kHz. The noise floor of the system prevents

measuring noise currents below 1 X2PM2/Hz.

Figure 4 shows a typical low-frequency noise mea-
surement for GaAs and InP HBT-based Schottky
diodes. Three bias conditions are shown. From the
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near two, giving burst noise its characteristic Lorentzigure 3: Simplified schematic of the low-frequency

ian spectrum.

noise measurement system.
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measurements, both HBT-based diodes demonstrataiee 5. Several bias conditions are shown. The GaAs
noise behavior dominated by a flicker component. Atliodes show a pronounced burst component with a
comparable bias current, the GaAs diodes haveorner frequency of 50 kHz. We suspect that this is
slightly lower noise levels. This may be due to thedue to the high aluminum content in the GaAs HEMT
relative immaturity of the InP process, especially inepitaxy which behaves as DX centers. Again, the InP
surface passivation. We suspect that the InP diodeodes show higher noise at similar bias currents for
low-frequency noise will improve as the processhe similar sized devices. An interesting observation
matures. to be noted is the invariant burst noise present near 80

The measured low-frequency noise of GaAs an Hz éega;]dlzis d(?f dblasTﬁurBe)r(]t f(::t t:]e InPi :'E de-Iv-i_th
InP HEMT-based Schottky diodes are depicted in Fig-ase chotiky diode. The center associate
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Figure 4: (a) InP and (b) GaAs HBT-based Schottky diode measured and modeled noise current spectral density.
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Figure 5: (a) InP and (b) GaAs HEMT-based Schottky diode measured and modeled noise current spectral density.
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